汗布厂家
免费服务热线

Free service

hotline

010-00000000
汗布厂家
热门搜索:
技术资讯
当前位置:首页 > 技术资讯

做座基于PCA的系统故障监测方法及其三相异步

发布时间:2021-10-09 05:47:21 阅读: 来源:汗布厂家

基于PCA的系统故障监测方法及其三相异步电动机仿真研究

PCA-based Fault Detection and Diagnosis with Application to a 3-Phase Asynchoronous Motors 要注意视察拉伸进程4个阶段中的各种现象

Xiong Li Liang Jun

Institute of Systems Engineering, Zhejiang University

National Lab. of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China

Abstract Principle Component Analysis (PCA) is an effective way not only to eliminate correlation between process variables and reduce the influence of noise and disturbance on system, but also to reserve enough information of original data characteristics needed for modeling. Based on principle component model, detection and diagnosis analysis is carried out on a 3-phase symmetrical induction motors with multivariate statistical techniques.

Keywords Principle Component Analysis; Fault Detection and diagnosis; asynchronous motor

1 引言

作为多变量统计分析方法,主元分析(PCA)不依赖精确数学模型,通过对高维相关变量空间进行降维映射,将其转化为相互独立的低维变量空间,实现对复杂过程数据的特征抽取,并建立相应过程的主元模型[1]。主元模型舍弃了部分残差而保留体现数据变异的主要方向,从而达到抽取系统信息,清除系统干扰的目的。基于PCA的故障监测与诊断利用主元模型使得过程监控可以在这个减低了干扰的低维空间进行。由于变量间的相关关系,一个特定的故障会使过程测量值按照特定的规律变化,主元模型则包含了故障在变量空间的变化方向。在反映过程主要变化的几个主元中,故障表现了他们对系统的不同影响。实际故障的监测与诊断可以依据基于主元模型的平方预测误差(SPE)统计图法和主元得分图法来进行的。本文对一个非对成三相绕组异步电动机建立了故障诊断主元模型,其SPE统计图和主元得分图可以有效的显示故障出现的情况。

2 过程数据的主元分析

主元分析的对象是过程变量的样本数据矩阵。数据矩阵的行表示采样值或观察值,列表示变量。PCA则是过程数据矩阵的谱分解。PCA产生一个压缩的统计模型―主元模型,模型给出了变量的线性组合,描述了数据变化的主要趋势。主元模型使原标准差的平方重新分布,大多数标准差平方会分布在第一主元上,其次分布在第二主元上,依此类推。按某种准则将最后几个主元视为分解残差予以忽略,则有可能利用最少主元来说明最多的信息2.消除原料树脂、色母的影响。

一个主元的得分是指通过对给定采样数量的所有变量的特征值进行主元估值时所得到的值。例如:第一主元(PC)衡量了变量的线性组合度,这些变量获取了最多的数据的变化,因为pi是与协方差的最大特征值相关的。第二主元拥有次多的数据变化,和协方差的第二大特征值相关,并和第一主元正交。与第一主元不相关的变量线性组合度说明了一些变化是与第一主元无关的[4]。

简要的说,对n维变量空间而言第一载荷向量p1定义了最大变化方向,而第一得分向量t1表示了每个采样或观察值在第一主元轴上的投影。对一个m行n列矩阵X,能够计算出n个主元,但是因为相关性和噪声,最前的k个主元就足以表述数据的主要变化了,即可得到k个主元的主元模型。

建立主元模型,合理确定主元个数非常重要。通常因此采用方差累积贡献率百分比(CPV)原则,选择百分比大于85%的主元个数。在基于主元分析的过程故障诊断中,一般用来描述正常运行过程的主元不超过3个(Kresta等,1991)。实际检验中,也可采用交叉检验法来确定最优主元个数。即将数据分为两部分,一部分用于建立主元模型,一部分则用来测试各主元模型,然后从中选取检验数据测试误差最小的那个主元模型。

3 平方预测误差统计控制图

对生产工况下的运行数据,进行主元分析前,要进行归一化,以消除实际量纲的影响,即将每个变量减去其均小于该值的数据将不被储存值然后除以其标准差:

4.主元得分图

在建立主元模型的基础上,可以计算每个时刻的主元得分值,可以据此做单个主元得分值趋势图,可以做两个不同状况的相对得分图。

不同的异常状况下,主元得分在平面图上的位置是不同的,因而可以利用主元得分图发现过程的异常波动。在相对得分图中,分别以不同标记画出正常状况下主元得分的点簇位置,可以判断过程是否出现异常偏离情况。

5 三相绕组异步电动机的故障监测与诊断

乳腺增生有什么能消肿的办法
有什么女性可以调理乳房疼的中成药
乳结泰胶囊能不能治乳腺肿痛
乳结泰胶囊可以治疗乳腺增生吗